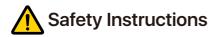
Floor Mounted Battery

Pack Installation & Operation Manual

BR-PC-15KWH BR-PC-16KWH BR-PC-30KWH


Content

1. Preface	01
2. Label Explanation	02
3. Product Advantages	02
4. Product Technical Parameters	03
4.1 Specification	03
4.2 Interface Overview	03
4.3 Battery Management System (BMS)	05
4.3.1 Overcharge Protection	05
4.3.2 Overdischarge Protection	05
4.3.3 Overcurrent Protection	05
4.3.4 Over Temperature Protection	05
4.3.5 Low Temperature Protection	05
5. Installation and Configuration	06
5.1 Packing	06
5.2 Recommended Tools	06
6.Connection	07
6.1 Precautions Before Connecting The Inverter	
6.2 RJ45 Connector Diagrams of Inverter's port	
6.3 Precautions Before Connecting The Inverter with Battery in Parallel	
6.4 Battery & Inverter Connection	
6.5 Dip Code Switch Definition and Setting	
7. Operation	12
7.1 Check Before Power on	
7.2 Power on	12
8. Operation of Bluetooth	14
8.1 Bluetooth	14
8.2 Operation of Communication Protocol Switch(Via Bluetooth App)	17
9. Operation of Upper System	18
9.1 Log in	
9.2 Switching communication protocols via PC	
9.3 Communication Protocol Switching via Screen	20
9.4 Communication Compatible List	22
10. Storage	23
11. Warning	23

1. Preface

This manual will provide detailed product information and installation instructions for users of the Floor mounted series products. Please read this manual carefully, and put this manual in a place where you can install, operate, and obtain it conveniently.

The safety precautions mentioned in the manual do not represent all the safety matters that should be observed, but are only supplementary to the safety precautions. When installing, operating, and maintaining equipment, local safety regulations and norms should be followed. Only trained professionals can install, operate and maintain equipment. The responsibility for losses will be not covered as the issue caused by violation of general safety operation requirements or violation of safety standards for the design, production, and use of equipment. Installation and maintenance personnel must have high-voltage and AC power operation skills. When installing, operating, and maintaining equipment, they must not wear any conductive objects, such as watches, bracelets, bracelets, and rings, and prevent moisture from entering the equipment.

High Voltage Danger

The high-voltage power supply provides power for the operation of the equipment. Direct contact or indirect contact with high-voltage power supply through wet objects will cause fatal danger.

Use Professional Tools

Always use professional tools instead of personal tools when working with high voltage and AC power

Anti-static

The static electricity generated by the human body will damage the electrostatic sensitive components on the board. Before touching the plug-in, circuit board or chip, make sure to take proper anti-static measures.

Operate Attention

The power must be cut off first before operation, do not hot-line work.

DC short circuit Danger

The power system provides a DC-regulated power supply, and a DC short circuit will damage the equipment and cause personal injury.

2. Label Explanation

The label contains the following information

3. Product Advantages

This product is a lithium iron phosphate battery (LFP LiFePO4) composed of 16 cells in series. Which is suitable for home energy storage systems. It can be customized according to customer needs to meet diverse application scenarios and provide stable power for various equipment of users.

- a. Built-in Battery Management System (BMS): Overcharge, overdischarge, overcurrent, temperature control, short circuit and other protection functions.
- b. Passive Balance Function: There is a voltage equalization function during the charging.
- c. High Cost Performance: High safety performance, long service life, stable and reliable quality.
- d. Expandable: Equipped with RS232/ RS485/ CAN bus ports, support up to 16 units in parallel.
- e. Wide Working Temperature: -20 C to 60 C, excellent high-temperature discharge performance.
- f. Convenient: Modular design, small size and lightweight, easy to install and maintain.

4. Product Technical Parameters

4.1 Specification

ltem		Specification	s	
Model	BR-PC-LV 15KWH	BR-PC-LV 16KWH	BR-PC-LV 30KWH	
Nominal Voltage	51.2V	51.2V	51.2V	
Operating Voltage	43.2V-57.6V	43.2V-57.6V	43.2V-57.6V	
Nominal Capacity	300AH	314AH	600AH	
Total Energy	15360Wh	16076Wh	30720Wh	
Configuration	1P16S	1P16S	2P16S	
Charging Cut-off Voltage	58.4V	58.4V	58.4V	
Discharge Cut-off Voltage	43.2V	43.2V	43.2V	
Operation Temperature	-20℃~60℃	-20℃~60℃	-20°C~60°C	
Standard Charging Current	50A	50A	50A	
Max Continuous Charging Current	200A	200A	200A	
Max Continuous Discharge Current	200A	200A	200A	
Dimension	800*240*645mm	800*240*645mm	800*430*610mm	
Net weight	112kg	112kg	214kg	

4.2 Interface Overview

P.S: There will be some differences in the appearance of the battery due to the version.

As shown in the picture

Take BR-PC 15KWH as example

Position	ltem	Description
1	P-	The negative terminal of the battery, can be connected to the negative pole of the inverter through a cable for DC output.
2	P+	The positive terminal of the battery, can be connected to the positive pole of the inverter through a cable for DC output.
3	Circuit breaker	Protect the battery against overloads and short circuits
4	RST	Manual-return switch button
5	Power Indicator	Turn on then light-on, turn off then light-off
6	Ground wire	Ground wire interface
7	RUN	Indicating the normal operation status of the battery
8	Alarm	Indicating the abnormal state of the battery, if there is an low voltage or over voltage, the alarm will sound.
9	ADD	Setting up battery parallel communication and inverter communication
10	RS485 A	RS485 port for the inverter or the upper system communication
11	CAN	CAN port for the inverter communication
12	RS232	Communication port for the upper system.
13	RS485 B/C	RS485 port for parallel communication
14	Power switch	The switch for turn on/turn off the battery pack.
15	Touch Colorful Screen	Display battery voltage, SOC, temperature, etc.
16	LED Strip	Display the Battery SOC

4.3 Battery Management System (BMS)

4.3.1 Overcharge Protection

When the voltage of any single cell or whole battery pack is higher than the set value during the charging, and the duration reaches the limited time, the system enters the over charging protection state automatically, the charging MOS is turned off at the same time, and the battery cannot be charged. After the voltage of each cell and the whole battery pack drops below the cell over charging recovery value, the over charging protection state is released. It can also be released by discharging to return to normal state.

4.3.2 Overdischarge Protection

When the voltage of any single cell or whole battery pack is lower than the set value during discharging, and the duration reaches the limited time, the system enters the overdischarge protection state, the discharge MOS is turned off, and the battery cannot be discharged. After the overdischarge protection of the battery pack occurs, it can be released by charging the battery pack.

4.3.3 Overcurrent Protection

During charging and discharging, when the current exceeds the set value of the protection current, and the duration reaches the limited time, the system enters the overcurrent protection state, the charging and discharging MOS will be turned off automatically, and the battery cannot be charged and discharged, charging and discharging the battery pack can release the overcurrent protection state.

4.3.4 Over Temperature Protection

When the NTC detects the temperature of the battery cell surface is higher than the setting value of over temperature protection during charging and discharging, the management system enters the over temperature protection state, the charging or discharging MOS is turned off, and the battery pack cannot be charged or discharged in this state.

4.3.5 Low Temperature Protection

When the NTC detects that the temperature of the cell surface is lower than the setting value of low temperature protection during charging and discharging, the management system enters the low temperature protection state, the charging or discharging MOS is turned off, and the battery pack cannot be charged or discharged in this state.

5. Installation and configuration

5.1 Packing

- a. After receiving the battery, open the box to check the battery surface if get any broken, cracks or other bad phenomena; if get that, please do not install, and need to contact the supplier, and wait for the supplier's reply before proceeding to the next step.
- b. Please ensure that the following items are included in the packaging:

Battery*1

Inverter communication cable*1

Positive and negative cable 100cm 35mm2(optional)

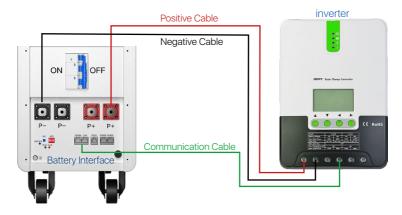
Parallel communication cable*1

M8*12mm combination screws*2

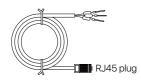
Upper system communication cable*1

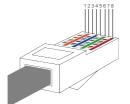
5.2 Recommended Tools

Before installing the battery pack, the user needs to have the tools as following list:


Picture	ltem	Description
1	Crimping Tool	Crimping tool for RJ45 terminal
	Crimping Plier	Crimping tool for insulated electric connectors
3	Socket Wrench	Tighten the M8 screws
E II	Electrician Gloves	Protect from electrical shocks and burns

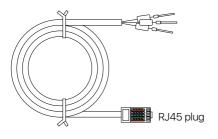
6. Connection

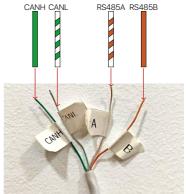

- 6.1 Precautions Before Connecting The Inverter
- a. Use a multi-meter to measure whether connection of the positive and negative cables are


conducting, and check whether that connections are loose.

- b. The battery should be switched off before wiring to ensure that there is no DC output from the battery.
- c. Connect positive terminals of the battery and the inverter with red power cable, and then connect negative terminals of both sides with black power cable.
- d. Connect both communication ports of the battery(RS485A/CAN) and the inverter(BMS port) with the communication cable, BMS ports of inverter have different definitions for some brands, please check the inverter manual.

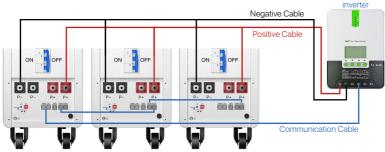
Communication cable connection Pin definition is as follows:

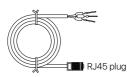


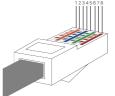


RS485A Port	PIN	1	2	3	4	5	6	7	8
	Define	RS485-B	RS485-A	GND	NC	NC	GND	RS485-A	RS485-B
CAN Port	PIN	1	2	3	4	5	6	7	8
	Define	NC	NC	NC	CAN-H	CAN-L	NC	GND	NC

6.2 RJ45 Connector Diagrams of Inverter's port

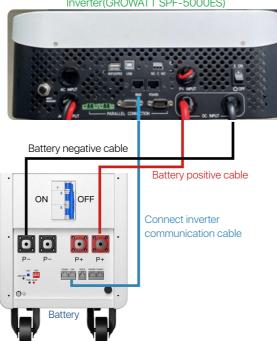



RJ45 Connector Diagrams	Communication
Inverter	CANH->pin4 CANL->pin5
Inverter	CANH->pin7 CANL->pin8
Inverter	RS485B->pin1 RS485A->pin2
Inverter	RS485B->pin3 RS485A->pin5
Please set up the RJ45 connector according to the	ne pin definition of the inverter


6.3 Precautions Before Connecting The Inverter with The Battery Pack in Parallel

- a. Use a multi-meter to measure whether connection of the positive and negative cables are conducting, and check whether that connections are loose.
- b. The battery should be switched off before wiring to ensure that there is no DC output from the battery.
- c. Lock the parallel cable wires to the positive terminal of the battery pack first, then connect another end to the negative terminal.
- d. Parallel communication cable to the RS485 port of the battery pack(It must go between different ports, e.g: RS485B of master battery to RS485C of the salve 1 battery)
- e. Connect positive terminals of the battery and the inverter with red power cable, and then connect negative terminals of both sides with black power cable.
- f. Connect both communication ports of the battery(RS485A/CAN) and the inverter(BMS port) with the communication cable, BMS ports of inverter have different definitions for some brands, please check the inverter manual.

Parallel communication cable connection Pin definition is as follows:



RS485 Parallel	PIN	1	2	3	4	5	6	7	8
communi-	Define	RS485	RS485	GND	NC	NC	GND	RS485	RS485
cation interface definition		-В	-A					-A	-В

6.4 Battery & Inverter Connection

Connect the positive and negative cables of the battery to the positive and negative terminals of the DC input of the inverter, insert the RJ45 crystal plug at one end of the distributed inverter communication cable to the RS485 of the battery, and connect the other end to the BMS terminal of the inverter according to the defined line voltage, and then connect the battery to the inverter.

Inverter(GROWATT SPF-5000ES)

6.5 Dip Code Switch Definition and Setting

ADD switch is a 4-bit DIP switch to manually distribute the communication address of parallel batteries.

The BMS will recognize the DIP address in a few seconds. When the DIP address is 0, the battery is configured as stand-alone working mode or master working mode; When the DIP address is 1 to 15, the BMS is configured as the slave working mode.

Please refer to the table below to set the DIP switch for parallel connection of different batteries.

	4-BIT							
Address	Di	p Switch	Position		Illustration			
Address	#1	#2	#3	#4	IIIUSITATION			
0	OFF	OFF	OFF	OFF	ON L3 1 2 3 4			
1	ON	OFF	OFF	OFF	ON L3 1 2 3 4			
2	OFF	ON	OFF	OFF	ON L3 1 2 3 4			
3	ON	ON	OFF	OFF	ON L3 1 2 3 4			
4	OFF	OFF	ON	OFF	ON L3 1 2 3 4			
5	ON	OFF	ON	OFF	ON L3 1 2 3 4			
6	OFF	ON	ON	OFF	ON L3 1 2 3 4			
7	ON	ON	ON	OFF	ON L3 1 2 3 4			
8	OFF	OFF	OFF	ON	ON L3 1 2 3 4			
9	ON	OFF	OFF	ON	ON L3 1 2 3 4			
10	OFF	ON	OFF	ON	ON L3			
11	ON	ON	OFF	ON	ON L3 1 2 3 4			
12	OFF	OFF	ON	ON	ON L3 1 2 3 4			
13	ON	OFF	ON	ON	ON L3 1 2 3 4			
14	OFF	ON	ON	ON	ON L3 1 2 3 4			
15	ON	ON	ON	ON	ON L3 1 2 3 4			

7. Operation

7.1 Check Before Power on

- a. Check all positive, negative cables and communication lines are connected correctly and safely.
- b. Check the battery is firmly installed, easy to operate and maintain, and check ventilation.
- c. Insulate the unused ports.

7.2 Power on

- a. Turn on the switch on the battery.
- b. The green running LED is normal on(Check the status of the LED indicators)
- c. If it is failed to switch on the battery system, check if all the electrical connection is correct.
- d. If the electrical connection is correct, but the battery system is still unable to switch on, contact our after-sale service within 48 hours

Status	Charging					
Capacity Indicator	L1•	L2●	L3●	L4●	L5•	L6●
0~16.6%	Light	OFF	OFF	OFF	OFF	OFF
16.6~33.2%	Light	Light	OFF	OFF	OFF	OFF
33.2~49.8%	Light	Light	Light	OFF	OFF	OFF
49.8~66.4%	Light	Light	Light	Light	OFF	OFF
66.4~83.0%	Light	Light	Light	Light	Light	OFF
83.0~100%	Light	Light	Light	Light	Light	Light

LED Indicator Status

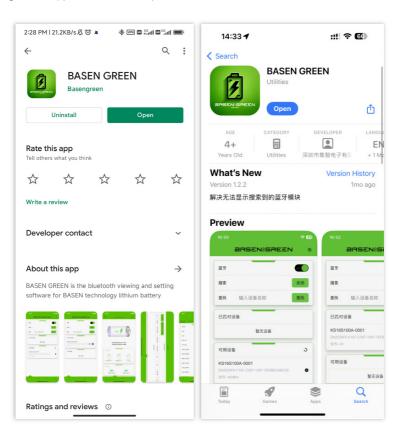
Status	Discharge					
Capacity Indicator	L1•	L2•	L3●	L4•	L5●	L6●
0~16.6%	Light	OFF	OFF	OFF	OFF	OFF
16.6~33.2%	Light	Light	OFF	OFF	OFF	OFF
33.2~49.8%	Light	Light	Light	OFF	OFF	OFF
49.8~66.4%	Light	Light	Light	Light	OFF	OFF
66.4~83.0%	Light	Light	Light	Light	Light	OFF
83.0~100%	Light	Light	Light	Light	Light	Light

Flashing Definition

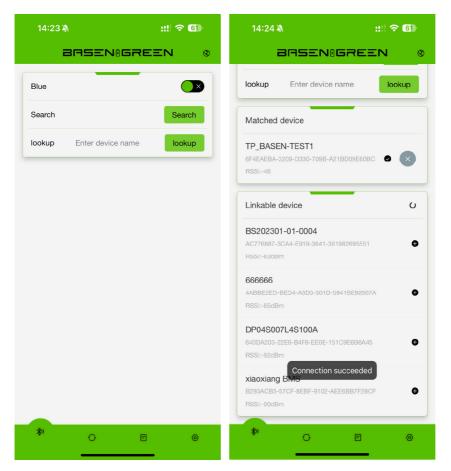
Item	Light	OFF
Flash 1	0.25 s	3.75 s
Flash 2	0.5 s	0.5 s
Flash 3	0.5 s	1.5 s

Status	Normal/warning/	RUN	ALM	Battery capacity LED	Specification
Status	protection	•	•	• • • •	
Power off	Sleep	OFF	OFF	ALL OFF	
Stand by	Normal	Flash1	OFF		
Otaria by	Warning	Flash1	OFF		
	Normal	Flash2	OFF		
	Warning (Not including temperature)	Flash2	OFF		
Charging	Over charging protection	Flash1	OFF		ALM OFF when protected during over charging
	Over Temperature, Low-temperature, Over current protection	Flash1	Flash2		
	Limited charging	Light	OFF		
	Normal	Light	OFF	Display according	
	Warning	Light	Flash3	to the actual SOC	ALM OFF when discharge over current
	Over discharge Protection	Flash1	OFF		ALM OFF when protected during over charging
Discharging	Over Temperature, Low-temperature Over current Shot Circuit Reverse Polarity Protection	Flash1	Flash2		
Invalidation	Error	OFF	Light	ALL OFF	Error refers to hardware defection such as BMS voltage sampling device,charging MOS damage, tempera ture sensor disconnection, etc.

8. Operation of Bluetooth


BASENGREEN 48V battery pack is equipped with a Bluetooth function, supports APP monitoring battery statuses. All information available in the battery, such as the state of charge, voltage, operating current, temperature, and other operating information are transmitted in real-time via the Bluetooth transmitter. The parameters can be made visible with the BASENGREEN App.

Download: Android: "BASENGREEN" in Play Store


iOS: "BASENGREEN" in Apple Store

8.1 Bluetooth

a. For Android users, please visit the Google Play Store and search for 'BASENGREEN'. For iOS users, go to the Apple Store and look up 'BASENGREEN'.

b. Turn on Bluetooth and search for the corresponding product's Bluetooth code

NOTE:

1. If you selected a battery to connect to and the app doesn't confirm the connection, it might be someone else is already connected to the battery. Only one device connects to the battery at the same time.

2. The Bluetooth app supports status monitoring only. It does not support any modified operation except communication protocol switching

c. Menu

*) 				
	≵ 0	0	Ē	0

Bluetooth list: Check the Device list and connect it.

Homepage: Check the status of battery-SOC, Volt, Current, Temperature, etc.

Historical Data: Not available

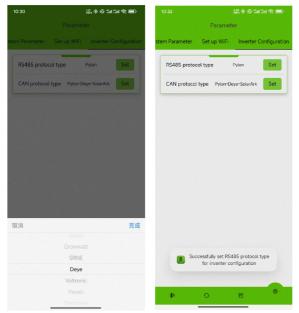
Setting: Base Message: Check the pack voltage, current, cycle time, etc.

Cell Voltage: Check the cells voltage.

Language: English/Chinese switching.

Fault Data: Not available

System Parameter: Not available


Set up WiFi: Setup WiFi function(Not available)

Inverter configuration: Communication protocol switching(Chapter 9.2)

- 8.2. Operation of Communication Protocol Switch(Via Bluetooth App)
- a. Connect to the Bluetooth app first(Chapter 9.1)
- b. Swipe left to find 'Inverter Configuration'. Set unlock code is 888888

14:27 🔌		::: 🗢 🖬	
	Parame	əter	
stem Parameter	Set up WiFi	i Inverter Configur	ation
Pack Voltage		52.67	v
Current		c	м
SOH		100	%
Please			1
Cance		Confirm	
Cell 3 Balance	d State	Clos	se
Cell 4 Balance	d State	Clos	90
Cell 5 Balance	d State	Clos	10
Cell 6 Balance	d State	Clo	10
Cell 7 Balance	d State		
*	0	e •	

c. Choose the communication protocol and set, the battery pack will be restart after few second with "bee" sound. Then set up is successful.

9. Operation of Upper System

BASEN 48V battery pack supports to connect with our upper system to monitor the status of the battery and modify the communication protocol, please contact our sales representative or visit our website to get the latest upper system software.

9.1 Log in

- a. The upper system communication cable connects to the RS485 port on the battery and then to the USB port on the PC/Laptop
- b. Download and open the upper system software
- c. Modify the language
- d. Updated the status of battery automatically

Notice: If it is failed to connect to the upper system, check if all the connection is correct. If the connection is correct, but the upper system is still unable to work, please contact our after-sale service

RS485A CAN RS232 RS485B RS485C	

控	参数	配置	存储					
祖显示	多组显示	显示记录	并机分组显示	并机分组数据存储				
四 称	数值	单位	267 	對信 .	▲位 第05与政治地状态 第04805号道● 放电05号 充电005英新● 放电205支 系电1005英新● 放电205支 月間: 加熱状态 ● 风雨状え 保护状态: 書事状态:	断 ● 放电状态 ●	 	(L液
最大电 关闭啡 波特的	A	小电圧 (マ	単体匀衡 拨码地址 1 Pack数量 1		6	简格中文 简体中文 English		

NFO PAR	AL CONFIG	STORA	GE			
			allel group disp	lay Paralle	l packet d	ata storage
0 1 2						Address 0 \checkmark CAN type Pylon \checkmark Read Set
						Now address: 1 405 type Fylon ~ Read Set
						Real-time data read successfully
ntervals 4000	Pe Pe	ll time 10	100 🗧 🛛 Read	Count: 13		Real-lime data lead successfully
Pack Volt 5	2.97 V Pac	k Curr	0.00 A SOC	100 % 3	он 100 ж	
-						🛑 CHG MOS On 🛑 DISG MOS On 🛑 Charge 🛑 Dischar
Remain_Ca	30.00 Ah Fu	all_Cap	280.00 Ah	Cycles	0 Times	Battery system
Caption	Value	Unit				Volt 52.97 V Total_Cap 840 Ah SOC 99 %
Max_Vol	3, 337	10	1			
Min_Vol	3. 292	10			100 %	Curr 0 A Renain_Cap 839 Ah
Vol Diff	0.045	V		· · ·	100 /0	
01_D111	0.045	v				Max Cell V 3353 nV Max Batt T 18.0 °C Max Amb T 19.0 °C
Vol 01	3 301					
	3.301	V	Caption	Value	Unit	
Vol 02	3.301 3.334 3.298	V V V	Anb_Tenp	19.0	C	Min_Cell_V 3291 nV Min_Batt_T 15.0 C Min_Amb_T 19.0 C
Vol 02 Vol 03	3.334 3.298	V V				Nin_Cell_V 3291 aV Hin_Batt_T 15.0 °C Hin_Amb_T 19.0 °C
Vol 02 Vol 03 Vol 04	3.334	V	Anb_Temp NOS_Temp	19.0 15.0	r r	Hin_Cell_V 3291 aV Hin_Batt_T 15.0 °C Hin_Mab_T 19.0 °C
Vol 02 Vol 03 Vol 04 Vol 05	3. 334 3. 298 3. 334 3. 335	V V V	Anb_Tenp NOS_Tenp Nax_Tenp	19.0 15.0 16.0	C 01	
Vol 02 Vol 03 Vol 04 Vol 05 Vol 06	3. 334 3. 298 3. 334	V V V	Anb_Tenp NOS_Tenp Nax_Tenp Nin_Tenp	19.0 15.0 16.0 15.0	C C 01 03	Charge Discharge Volt high alars Volt low alars
Vol 02 Vol 03 Vol 04 Vol 05 Vol 06 Vol 07	3. 334 3. 298 3. 334 3. 335 3. 300	V V V V	Anb_Tenp NOS_Tenp Nax_Tenp	19.0 15.0 16.0	C 01	Churge Bischurge Valt high alwas Valt low alwas
Vol 02 Vol 03 Vol 04 Vol 05 Vol 06 Vol 06 Vol 07 Vol 08	3. 334 3. 298 3. 334 3. 335 3. 300 3. 336 3. 298	V V V V V V	Anb_Tenp MOS_Tenp Max_Tenp Min_Tenp Tenp_Diff	19.0 15.0 16.0 15.0 1.0	01 03 03	Charge Discharge Volt high alars Volt low alars
Vol 02 Vol 03 Vol 04 Vol 05 Vol 05 Vol 06 Vol 07 Vol 08 Vol 09	3, 334 3, 298 3, 334 3, 335 3, 300 3, 336 3, 298 3, 294	A A A A A A A A	Anb_Tenp NOS_Tenp Nax_Tenp Nin_Tenp Tenp_Diff Tenp 01	19.0 15.0 16.0 15.0 1.0 16.0		Churge Bischurge Valt high alwas Valt low alwas
Vol 02 Vol 03 Vol 04 Vol 05 Vol 05 Vol 06 Vol 07 Vol 08 Vol 09 Vol 10	3, 334 3, 298 3, 334 3, 335 3, 300 3, 336 3, 298 3, 294 3, 337	A A A A A A A A A A A A A A A A A A A	Anb_Temp NOS_Temp Max_Temp Nin_Temp Temp_Diff Temp 01 Temp 02	19.0 15.0 16.0 15.0 1.0 1.0 16.0	1 01 02 02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Charge Biccharge Valt high alone Valt lor alone
Vol 02 Vol 03 Vol 04 Vol 05 Vol 06 Vol 07 Vol 08 Vol 09 Vol 09 Vol 10 Vol 11	3, 334 3, 298 3, 334 3, 335 3, 300 3, 336 3, 298 3, 294 3, 337 3, 292	A A A A A A A A A A A A A A A A A A A	Anb_Temp NOS_Temp Nax_Temp Min_Temp Temp_Diff Temp 01 Temp 02 Temp 03	19.0 15.0 16.0 15.0 1.0 1.0 16.0 16.0 15.0	111 111 111 111 111 111 111 111	Charge Discharge Valt high dans Valt ler dars
Vol 02 Vol 03 Vol 04 Vol 05 Vol 06 Vol 07 Vol 08 Vol 09 Vol 10 Vol 10 Vol 11 Vol 12	3, 334 3, 298 3, 334 3, 335 3, 300 3, 336 3, 298 3, 294 3, 294 3, 292 3, 336	A A A A A A A A A A A A A A A A A A A	Anb_Temp NOS_Temp Max_Temp Nin_Temp Temp_Diff Temp 01 Temp 02	19.0 15.0 16.0 15.0 1.0 1.0 16.0	1 01 02 02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Charge Biccharge Valt high alone Valt lor alone
Vol 02 Vol 03 Vol 04 Vol 05 Vol 06 Vol 07 Vol 08 Vol 09 Vol 09 Vol 10 Vol 11 Vol 12 Vol 13	3, 334 3, 298 3, 334 3, 335 3, 300 3, 398 3, 298 3, 294 3, 337 3, 292 3, 292 3, 294	A A A A A A A A A A A A A A A A A A A	Anb_Temp NOS_Temp Nax_Temp Min_Temp Temp_Diff Temp 01 Temp 02 Temp 03	19.0 15.0 16.0 15.0 1.0 1.0 16.0 16.0 15.0	111 111 111 111 111 111 111 111	Charge Bicsharge Valt high alars Valt lor alars
Vol 02 Vol 03 Vol 04 Vol 05 Vol 06 Vol 07 Vol 08 Vol 09 Vol 10 Vol 11 Vol 11 Vol 12 Vol 13 Vol 14	3, 334 3, 298 3, 334 3, 335 3, 300 3, 335 3, 298 3, 294 3, 337 3, 292 3, 336 3, 294 3, 294 3, 294 3, 293	A A A A A A A A A A A A A A A A A A A	Anb_Temp NOS_Temp Nax_Temp Min_Temp Temp_Diff Temp 01 Temp 02 Temp 03	19.0 15.0 16.0 15.0 1.0 1.0 16.0 16.0 15.0	111 111 111 111 111 111 111 111	Charge Biccharge Valt high alors Valt lor alors
Vol 01 Vol 02 Vol 03 Vol 04 Vol 05 Vol 06 Vol 07 Vol 08 Vol 09 Vol 09 Vol 10 Vol 11 Vol 11 Vol 11 Vol 13 Vol 14 Vol 15 Vol 05 Vol 09 Vol 09 Vol 09 Vol 09 Vol 01 Vol 09 Vol 09 Vol 09 Vol 09 Vol 09 Vol 09 Vol 01 Vol 09 Vol 01 Vol 09 Vol 09 Vol 09 Vol 09 Vol 09 Vol 09 Vol 01 Vol 09 Vol 10 Vol 112 Vol 13 Vol 13 Vol 13 Vol 14 Vol 15 Vol 09 Vol 09 Vol 09 Vol 09 Vol 10 Vol 09 Vol 10 Vol 10 Vol 09 Vol 10 Vol 09 Vol 10 Vol 1	3, 334 3, 298 3, 334 3, 335 3, 300 3, 336 3, 298 3, 294 3, 337 3, 292 3, 336 3, 294 3, 294 3, 294 3, 293 3, 296	A A A A A A A A A A A A A A A A A A A	Anb_Temp NOS_Temp Nax_Temp Min_Temp Temp_Diff Temp 01 Temp 02 Temp 03	19.0 15.0 16.0 15.0 1.0 1.0 16.0 16.0 15.0	111 111 111 111 111 111 111 111	Charge Bischarge Valt high along Valt low along Along
Vol 02 Vol 03 Vol 04 Vol 05 Vol 06 Vol 07 Vol 08 Vol 09 Vol 09 Vol 10 Vol 11 Vol 12 Vol 13 Vol 14	3, 334 3, 298 3, 334 3, 335 3, 300 3, 335 3, 298 3, 294 3, 337 3, 292 3, 336 3, 294 3, 294 3, 294 3, 293	A A A A A A A A A A A A A A A A A A A	Anb_Temp NOS_Temp Nax_Temp Min_Temp Temp_Diff Temp 01 Temp 02 Temp 03	19.0 15.0 16.0 15.0 1.0 1.0 16.0 16.0 15.0	111 111 111 111 111 111 111 111	Charge Biccharge Valt high alors Valt lor alors

9.2 Switching communication protocols via PC

Connect to the upper system and follow the path:

INFO—Parallel Group Display—CAN Type/RS485 Type—Read—Choose the protocol—Set

Family_BMS-V1.1.635-15	-	- 0	×
INFO PARAI CONFIG STORAGE			
SinglePack MultiPacks Record Parallel group display Parallel packet data	storage		
0 1 2 5 4 5 6 7 0 9 10 11 12 13 14 15 18 17 18 19 0 2 22 23 24 5 26 27 20 29 0 31 Intervals 400 0 7 All time 100 2 Read Count: Pack Volt 0 V Pack Curr 0 A 50C 0 \$ 50H 0 \$ Remain_Ca 0 Ah Full_Cap 0 Ah Cycles 0 Times Caption Value Unit Caption Value Unit	Adfress 0 CAf type State Kov address: 405 type State State Status: 1050,000 D150,000,000 Back State Corr Corr Ads State Valt V Total_Cop Ads Soc % Max_Gall_V *W Max_Sate_J C Max_Gall_V *W Max_Sate_J C Charge Discharge Valt high dura		
	Alem Troteet		< >
	Fult		< >
		ي , 📼	-
Status: Communication OK-, addr1fail BMS: BN-HES16S48V200LT55-V1.0.8 PCB E	BarCode: TBI22100702822	J) 🔤	1 49 86

9.3 Communication Protocol Switching via Screen

1. Introduction

Touch Colorful Screen

- a. Colorful Display: Touch Screen, easy to operate.
- b. Multi-language: Arabic, English, German, Spanish, Italian, French, Polish, Romanian
- c. System Theme: Support Dark Theme

- 2. Switch the communication protocol
- a. Turns on the battery, the screen will lights up and shows the data.

Total Voltage 52.46 V Total Current 0.00 A	SOC 27.99 % SOH 100 % 27.99 % Cycle 2 0 100	Ø
BMS Status NORMAL Parallel online/All 1/1	Finish Time h min Full Capcity 340.30 Ah Left Capcity 95.20 Ah 0 34030	8

b. Click the " 🛞 ", then click protocol in the setting page

Home	Settings	
About		
Theme		
Language		
Protocol		

c. There are CAN/RS485 options, click "Read" to check the currently protocol

(Default communication protocol: Pylon)

CAN F	rotocol	RS485 Protocol	
Read	Write	Read	Write
PYLON	~	PYLON	~

d. Choose the protocol and click the "write" button, it will shows "success"

e. Back to the home page, Swipe left to go to the next view.

	IDLE		
CAN Protocol	MAX.V.ID	MAX.V	
DEYE	1-8	3.279 V	\odot
and the second s		MIN.V 3.278 V	
RS485 Protocol	MIN.V.ID	DIFF.V	
PYLON	1-16		
CHG. Current Limit	ENV.Temp	MAX.Temp	
On O. Current Limit			
0.0 A	23.0°C		N
	23.0°C MOS.Temp		8
0.0 A DISCH. Current Limit 0.0 A	MOS.Temp 21.0°C	22.0 °C MIN.Temp 21.0 °C	
0.0 A DISCH. Current Limit 0.0 A CHG. Voltage Limit	MOS.Temp 21.0°C AVG.Temp	22.0 °C MIN.Temp 21.0 °C DIFF.Temp	•
0.0 A DISCH. Current Limit 0.0 A	MOS.Temp 21.0°C	22.0 °C MIN.Temp 21.0 °C	•

9.4 Communication Compatible List

Invert	er Brand	Communication	Protocol Name	Protocol Remarks	Communication	Interface
	wictron energy	method			Potter rate	Definition
维克托-Victron	mounter energy	CAN	Victron-CAN-V1.00- 211135	Active Upload	500K	7H、8L
古瑞瓦特-SPF Growatt-SPF	Growatt	485	Growatt BMS-RS485-protocal-1xSxxP_ESSL_V2.01 Growatt BMS-RS485-protocal-V2.0	MODBUS Standard protocols	9600	1B、2A
古瑞瓦特-SPF Growatt-SPF	Growatt	CAN	Growatt BMS CAN-Bus-protocol-low-voltage-V1.05	Active Upload	500K	4H、5L
古瑞瓦特-SPH Growatt- SPF	Growatt	CAN	Growatt BMS communication protocol of growatt low voltage- V1.01	Active Upload	500K	4H、5L
德业 Deye	Deye 德業	CAN	Deye LV-CAN communication protocol	Active Upload	500K	4H、5L
德业 Deye	Deye 德業	485	485 Modbus Protocol(4)-deye	MODBUS protocols	9600	1B、2A
尚科-Scolar	SACOLAR	CAN	Growatt BMS CAN-Bus-protocol-low-voltage-V1.05	Active Upload	500K	4H、5L
固德威-Goodwe	GOODWE	CAN	Goodwe-CAN-V1.7-220228-SolarinverterFamily-EN	Active Upload	500K	4H、5L
日月元-Voltronic Power	Voltronic Power	485	Voltronic Power-485-V1.03-200325	MODBUS protocols	9600	3B、5A
首航-SOFAR	SCIFAR	CAN	SOFAR-CAN-V1.00-211117-Rev6	Active Upload	500K	1H、2L
锦浪-Solis	Solis	CAN	Solis-CAN-V1.0-191228-lowVoltage	Active Upload	500K	4H、5L
鹏城-Luxpower		CAN	Luxpowertek Battery CAN Protocol -2021	Active Upload	500K	4H、3L
派能-Pylontech	PYLONTECH	485	Pylon-485-V3.5-161216-low voltage protocol	1363	115200	1B、2A
派能-Pylontech	PYLONTECH	485	Pylon-485-V3.5-161216-low voltage protocol	1363	9600	1B、2A
派能-Pylontech	PYLONTECH	CAN	Pylon-CAN-V1.2- 180408 -lowVoltage	Active Upload	500K	4H、5L
硕日-Srne	💋 SRNE	485	shuori BMS Modbus Protocol for RS485 V1.3(2020-11-24)	MODBUS	9600	7A、8B
美世乐 Must	MUST美世乐	CAN	PV1800F-CAN communication Protocol1.04.04	Active Upload	100K	6H、5L
艾思玛 SMA	SMA	CAN	SMA-CAN-V1.0.0-210630-FSS -ConnectingBat-TI-en-20W	Active Upload	500K	4H、5L
阳光电源 SUNGROW	SUNGROW	CAN	Pylon-CAN-V1.2- 180408 -lowVoltage	Active Upload	500K	4H、5L
爱士惟 AiSWEI	AiSWEI	CAN	Pylon-CAN-V1.2- 180408 -lowVoltage	Active Upload	500K	4H、5L
英威腾 INVT	invt	CAN	Pylon-CAN-V1.2- 180408 -lowVoltage	Active Upload	500K	4H、5L
科士达 KSTAR	KSTAR	CAN	Kstar CAN_Protocol-V1.11	Active Upload	500K	4H、5L
艾伏 Afore	Afore	CAN	Afore Communication Protocol CAN Bus Version V1.02_20210104	Active Upload	500K	4H、5L
素瑞德-SOROTEC	SOROCEC Power Solutions Expert	CAN	CAN Protocol 1.0(SOROTEC Protocol)	MODBUS Standard protocols	500K	4H、5L
索瑞德 SOROTEC	SOROLEC Power Solutions Expert	485	Protocal between Sorotec Inverter and Lithium Battery (RS485)	Active Upload	500K	1B、2A
SOL-ARK	Sol-Ark	CAN	Sol-Ark CAN Bus Protocol V1.2.pdf4-25-22		500K	4H、5L
迈格瑞能 MEGAREVO	MEGAREVO	CAN	Shenzhen MEGAREVO Hybrid Inverter-5K BMS Protocol V1.01	Active Upload	500K	4H、5L
MPP Solar	MP Solar	485	BMS 485 communication protocol 20200325(2)	MODBUS	9600	1B、2A
拓宝-TBB		CAN	CAN BUS Protocol of TBB Lithium Battery BMS Platform V 1.1	Active Upload	500K	4H、5L
盛能杰-Senergy		CAN	SenergyINV&BMS_ CAN_Protocols	Active Upload		4H、5L

10. Storage

- a. External terminals of the battery pack are insulated and protected.
- b. If the battery pack is stored for a long period of time without use, it is recommended that it be charged 30%-60%, and it is prohibited to store it completely uncharged.
- c. Batteries that have been in storage for more than 3 months should be recharged for 2-3 hours at 0.2C~0.3C.
- d. Batteries should be stored in a dry, clean, ventilated, non-corrosive gas environment, away from sources of ignition, to avoid exposure to the sun.
- e. Do not store or put in high temperatures over 60°C for a long period of time, otherwise, it will cause function deterioration and life span reduction.

11. Warning

To prevent possible battery leakage, heat generation, and explosion, please observe the following warning:

Warning!

- a. It is strictly forbidden to immerse the battery in seawater or water. When not in use, it should be placed in a cool and dry environment;
- b. It is strictly forbidden to reverse the positive and negative poles to use the battery;
- c. It is forbidden to use metal to directly connect the positive and negative electrodes of the battery to a short circuit;
- d. It is forbidden to transport or store batteries together with metals, such as hairpins, necklaces, etc;
- e. It is forbidden to knock or throw, step on the battery, etc.;
- f. It is forbidden to directly weld the battery and pierce the battery with nails or other sharp objects.

Attention!

- a. It is forbidden to use or place the battery under high temperatures (in the hot sun or in a very hot car), otherwise, it may cause the battery to overheat, catch fire or fail to function, and shorten its life; the recommended temperature for long-term battery storage is 10-45°C;
- b. It is forbidden to throw batteries into fires or heaters to prevent fire, explosion, and environmental pollution. Scrapped batteries should be returned to the supplier or battery recycling point for disposal;
- c. Do not use it in places with strong static electricity and strong magnetic fields, otherwise it will easily damage the battery safety protection device and bring unsafe hidden dangers;
- d. If the battery leaks and the electrolyte enters the eyes, do not rub it. Immediately rinse the eyes with clean water and send them to the hospital for treatment, otherwise, the eyes will be hurt. If the battery emits and odor, heats up, discolors, deforms, or has any abnormality during use, storage, or charging, immediately remove the battery from the device or charger and stop using it;
- e. It is forbidden to insert the positive and negative poles of the battery directly into the power socket, and a special charger for lithium-ion batteries must be used;
- f. Check the battery voltage and connectors before installation, and use it only after everything is normal;
- g. The battery is stored in half power. If the battery has not been used for three months, it needs to be recharged once;
- h. If the electrode is dirty, it should be wiped with a dry cloth before use. Otherwise, it may cause poor contact and function failure;

Need additional information?

Just Contact BASEN!

BRSENIGREEN

BASENGREEN YOUR RELIABLE POWER

Fax: (+86)0755-84737145

- Tex: (+86)130 0887 9993
- Email: info@Basengroup.com
- Shenzhen Basen Technology Co., Ltd.
- Add: Room 303, Building 3, 1980 Culture and Technology Industrial Park, Donghuan Road, Longhua District, Shenzhen